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The dependence of the solutions of a terminal optimal control problem on a parameter in the initial state vector is investigated. 
Attention is devoted mainly to the behaviour of the solution in the neighbourhood of a non-regular point. On the basis of the 
results, a method is proposed for constructing solutions of the problem for all parameter values. 

In practical work it is often important to know not only the solution of an optimal control problem for tixed parameter values, 
but also the dependence of the solution on the parameters, which enables one to estimate how the solution may vary when the 
parameters fluctuate. In addition, a knowledge of the dependence of the solutions of optimal control problems on the parameters 
provides the basis for methods of constructing feedback controls [l, 21, as well as stabilization and estimation methods based on 
the moving horizon strategy [3-51. 

Numerical solutions of such problems are generally achieved by continuation of the solution with respect to a parameter [6-91. 
The greatest difficulties in applying such methods arise in the case when the “actual” value of the parameter is a non-regular 
point. Therefore, in most publications devoted to sensitivity analysis and to investigating the parameter-dependence of the solutions, 
it is assumed that all parameter values are regular, or of degree of non-regularity one. In this paper no such assumptions are 
made. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

In the class of piecewise-continuous functions, we consider the family of terminal optimal control 
problems for a linear system whose initial states depend on a parameter z E [T*, z*] 

1 
f&x@‘)) + min 

oC(z) : i = Ax + bu, x(0) = Z(T) (1.1) 
f(x(t’))4 O,Iu(t)(S 1,tET=[O,t*] 

A E R”‘“, bE R”, rank(b,Ab ,..., A”-‘b)=n; f(x)=(&(x),i=1,2 ,..., m) 

wherex =x(t) E R” is the state vector, u = u(t) E R is the control,h(x) (i = 0, 1, . . . , m) are continuously 
differentiable convex functions with bounded continuous derivatives d2f(x)l&,dx, (s = 1, 2, . . . , n; 

j = 1,2, . . . , n; i = 0, 1, . . . , m) andz(r), z E [G, z*] is a given piecewise-smooth n-vector-valued function. 
It is required to investigate how the value of the performance criterion and the solutions of problem 

OC(r) depend on the parameter z and to describe a rule for constructing solutions when the parameter 
is perturbed. 

In what follows we shall assume that for any z E [G, T*], problem OC(r) satisfies Sleiter’s condition: 
a control, 1 ii,(t) 1 s 1, t E T, exists such that on the corresponding trajectory&(t), t E T, the inequalities 
f(_%,(t*)) < 0 are satisfied. 

Let X(z) denote the set of attainability in problem OC(z) and let X0 be the set of solutions of the 
problem 

to(x) 3 min, f(x) s 0, II x IIS CO 

where C,, > 0 is a fairly large number. We shall assume that for any z E [G, z*] it is true that X0 n X(T) 
= 0. 

tl’tikl. Mat. Mekh. Vol. 66, No. 2, pp. 200-213, 2002. 

187 
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2. STRUCTURE OF THE SOLUTION. DEFINING ELEMENTS 

Let us consider problem OC(z) for fixed T. Let u,(s) = (u,(t), t E T),x,(*) = (x7(t), t E 7’) denote an 
optimal control and the corresponding trajectory, and let w(t, y, x), t E T, y E Rm, x E R” be the solution 
of the adjoint system 

aI (x) am> 
$=-A% y/(t*)=-T-axy (2.1) 

According to the maximum principle [lo], a necessary and sufficient condition for a control u,(s) in 
problem OC(r) to be optimal is the existence of a vectory E Rm such that 

y 3 0, ym,o* 1) = 0 (2.2) 

v’(t. y, x&* ))bu,(t) = ~2 JW, y. x,0* Bbu, t E T 
” 

Let Y(z) C R” denote the set of all vectorsy possessing properties (2.1) and (2.2). Consider the point- 
set mapping 

t + Y(7), 7 E [T., z’] (2.3) 

Basing oneself on known results [ll, 121, one can show that, under the above assumptions, the mapping 
(2.3) possesses the following properties: 

1) for any z E [G, r*], the set Y(T) is non-empty and bounded; 
2) the mapping (2.3) is upper semi-continuous; 
3) for any convergent sequence 

the limit y* of any convergent subsequence of the sequence ~~)k_+.,, yk E Y(Q) is a solution of the 
problem 

~‘(0, Y,x,~ (t’))i(q + 0) --) mh y E W0) (24 

Let y be an arbitrary vector in Y(r). Put 

M= (I,..., m), M,(~)=(iEM:f;(x~(t*))=o) 

(rj(T),j = 1,2,..., p(z)) = {r E T: w’(t,y,x,(t*))b = 0) 

fj(‘t)<fj+,(‘t),j=1,2,...,P(~)-I 

Let us assume that p(z) = 0 for {t E T: ~‘(t, y, xT(t*))6 = 0) = 0. 
Let qj(j = 1, 2, . . . ,p(z)) be numbers such that 

W’@(t .(z)) = 0 
J 9 q = 0 , ,...,qj-l; 1 W’4”(tj(0))#0 

where W’@)(t) = d%lr’(t, y, x,(t*))blJP(q = 1, 2, . . .). Form the matrix 

(2.5) 

(2.6) 

%b,(r * )I 
why)= & 

~‘4’(t~(‘5)),q=0,1,.‘..,q.-l.j=1,2 ,..., p(c) J J ’ 

i E Mu(T) 

(a(r) = F(t)b,d9’(t) = d9a(t)/df9, b(t) = -F(r)A, F(r’) = E) 

Both here and below it will be assumed that sets of subscripts written in the form i = 1, 2, . . . , p or 

{L2, . . . . p> are empty ifp = 0, and that 

rank ati,j=L2,...,p I iEP I =Oifp=OorP=0. 
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Among the vectors y E Y(7) there is one such that 

Indeed, let us suppose that for a given vector y E Y(r) we have rank @(r, y) = k < IMa 1. Then a vector Ay 
E Rm, Ay f 0 exists such that 

c Wk(~‘)) Ay. + 3axN)) 
3X I 

ieM,, (1) JX 1 o’4’(t,(T))=0 

J 

9=0, 1, . . . . 9j- I; j= 1,2. . . ..P(T) 

Ayi = 0. i E Ma(r) 

(2.8) 

It follows from (2.8) that y + oAy E Y(r) for all sufficiently small o > 0. Let ‘JO denote the largest o > 0 such that 
y + oAy E Y(r). Since the set Y(z) is bounded and closed, we have (TO c -. Put y = y + oaAy. By construction, 
y E Y(z). Let tj(r), qj(j = 1, 2, . . . ,p(z)) denote the times (2.5) and numbers (2.6) corresponding to the vector y. 
By construction, rank @(z, y) > rank @(z, y). Consequently, in at most lM,(r) 1 - k steps one can find a vector 
y E Y(z) for which (2.7) is true. 

In what follows we let y(7) denote vectors in the set Y(z) that possess property (2.7). It was shown 
above that the set of such vectors is not empty. 

Suppose y(T) E Y(Z). Let t,(7), qj(j = 1, 2, . . . , 

i 

p(z)) denote the times (2.5) and numbers (2.6) 
corresponding to the vector y 7). Put 

M,(7)={i E Mu : yi(7)=0) 

f.(7)=(jE{l,..., p(7)) : 4/ > 11, k(7) = u,(+O) 

l.(7) = 1 if t,(7) = 0,147) = 0 if t,(z) > 0 or p(7) = 0 

1’(@ = I if f&7) = t*, r(7) = 0 if f&7) < [* or p(7) = 0 

We shall call the parameter sets 

S(7) = b7(7)~~(7),~,(7),L(7),l’(7)44,(7),L(7)) 

Q(7)= l$7)J= 192, . . ..P(7kY(7)1 

the structure and defining elements (corresponding to the vector y(7)) of the solution, respectively. 
We shall say that a solution u,(.) is non-degenerate (the value of the parameter 7 is a regular point) 

if 

P(7) = IMo(7)l + 147) + l*(7) + IL(7)l = 0 

It will be shown below that the concept of the non-degeneracy of solutions characterizes the stability 
of the structure of the solution to small variations of the parameter 7. 

We shall prove a number of auxiliary propositions. 

Lemma 1. Let y(r) E Y(r). If 8(z) = 0, then (Y(z) 1 = 1. 

PrOOf. Let [j(T), qj(j = 1, 2, . . . , P(T)) denote the instants (2.5) and numbers (2.6) corresponding to the vector 
y = y(z). Recall that, by agreement, we are assuming thaty(z) satisfies condition (2.7). 

Let us suppose first thatp(z) = 0. Then it follows from (2.7) that lM,(r) I = 0. It follows from the second condition 
of the relations representing the maximum principle (2.2) that Y(r) = y(r) = 0. This proves the lemma for the 
case whenp(z) =O. 

Now supposep(z) 2 1. It follows from the equality 8(r) = 0 that 

sj= 1, j= 1,2, . . . . p(r), I,(r) = l’(7) = 0 (2.9) 
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and condition (2.7) then becomes 

(2.10) 

It follows from relations (2.9) that all the times [j(Z) (j = 1, 2, . . . , p(z)) are switching points of the control u,(.). 
Taking this into account together with (2.2) we conclude that for any vector y E Y(z) necessarily 

By condition (2.10) this system cannot have more than one solution, that is, ) Y(T) 1 C 1. Since Y(r) f 0, this means 
that 1 Y(z) 1 = 1. The lemma is proved. 

Lemma 2. The property of non-degeneracy (degeneracy) of a control u,(.) is independent of the choice 
of the vector y(r) E Y(z). 

Proof. Supposey(r) E Y(z) is such that p(z) = 0. Then, by definition, the control u,(.) is non-degenerate, and, 
by Lemma 1, y(z) E Y(c). It is obvious that in that case there is no other vector y(z) E Y(r) for which p(r) # 0. 

Now suppose B(z) # 0. By definition, the control u,(.) is degenerate. Suppose a vector j(z) E Y(r) satisfying 
condition (2.7) exists such that p(z) = 0. But then, by Lemma 1, IY(r) 1 = 1, which contradicts the assumption 
y(z) E Y(z), y(c) E Y(r), J(z) f y(z). This contradiction completes the proof of Lemma 2. 

Lemma 2 implies that the concepts of non-degenerate control and regular point are well defined. 

3. PROPERTIES OF THE SOLUTIONS IN 
THE NEIGHBOURHOOD OF A REGULAR POINT 

Suppose that for some parameter value zc E [G, z*] we have a known optimal control u,,(.) of problem 
OC(zo) and a vector Y(Q) E Y(ro). Let S(Q) and Q(Q) denote the structure and defining elements, 
respectively, corresponding to the vectory(z), and T+(zo) is a sufficiently small right neighbourhood of 
the point zo. We wish to investigate the properties of the solutions of problems OC(z) for z E T+(zo). 

Let us assume that z. is a regular point. In that case, by Lemma 1, the set Y(ro) consists of a single 
element, and by property 2 of the mapping (2.3) we havey(rO + 0) = y(‘co). Taking this into consideration, 
by analogy with the results of [ll], one can show that for z E T+(zo) the parameters S(z) and Q(r) are 
uniquely defined by the relations 

S(z) = S,fQl(% k, rj(s), j = 1 I 2, . . ., p)) = 0, i E M. 

where 

yX%)=O,iE M\M, 

c’(W, k, t,W,j= 1, . ..t p),y(z))a(t,iz))=O,j= 172, . . ..p 

Q+l 
~(~,k,tj,j=1,2,...,p)=F(0)z(‘t)+ 5 k(-1)’ 1 a(t)dt, to=O, tp+, =t* 

j=O 
‘i 

(3.1) 

c’(x, y) = i3fo’(x)/ ax + y’@‘(x) / ax 

p = p(zo), k = k(%,), S = S(z,), M, = Ma 

and by the initial conditions 

‘j(ZO +O)=fj(ZO), j=1,2,...,p; y(Zo +O)=y(Zo) 

The optimal control u,(a) in problem OC(r), where z E T+(oo), has the form 

u,(t) = (-l)ik, t E [t,(r), $+,(z)[, j= 0, 1, . . . . p 

to(Z) = 0, r@,(r) = t* 

(3.2) 

(3.3) 
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Thus, if r. is a regular point, the solutions of problems OC(z) in its neighbourhood are uniquely defined 
by relations (3.1)-(3.3). 

4. THE CONSTRUCTION OF SOLUTIONS IN THE NEIGHBOURHOOD 
OF A NON-REGULAR POINT 

Now, assuming that r. is not a regular point, let us investigate the properties of the solutions of problems 
OC(r) for z E T+(zo). Note that now the set Y(z,) may consist of more than one vector, so that in the 
general case y(zo + 0) # y(zo). In addition, at T = z. the structure of the solution changes: S(z, + 0) 
+ S(ro). 

Thus, in order to construct solutions of problems OC(o) for z E T+(rO), one has first to determine 
the vectory(zo + 0) and parameters S(zo + 0), Q(zo + 0). 

Construction of the vector y(zo + 0). It follows from property 3 of mapping (2.3) that the vector 
y(ro + 0) is a solution of problem (2.4) which, written out in detail, is 

-(s + y’h)F(O)i(za + 0) + min 
Y 

-(% + y’h)a(t) 2 0, t E T’&); -(g + y’h)a(t) s a r E T,($) (4.1) 

y;aO, ieM,; yi=O, ~EM\M, 

where 

M,, =M,(o,), hi =a~(~,,(r*))l&, i=O,l,...,m; h 
=~~L,2,...,m~ 

and T*(T), T,(z) are the closures of the sets {t E T: u,(t) = l}, {t E T: u5(f) = -11, respectively. 
Put 

m. = rank I h,~U(lj), j = 1,2,...,r 

ieM, 
(4.2) 

(We assume that T = 0 if ub(*) has no points of discontinuity.) 
We shall assume that the following assumption holds. 

Assumption 1 (the analogue of Sleiter’s condition for problem (4.1)). 0 ne 
holds: either (a) me = IMa 1, 

of the following conditions 
or (b) m* < IM, 1 and no i E T exists such that 

(% + y’h)a(t^) = (& + y’h)ti(i) = 0, vy E Y(r,) 

It follows from property 1 of the set Y(zo) that problem (4.1) has a solution. Let y* be a solution of 
problem (4.1). Put 

t rj <r;+,, j=1,2 ,..., PI-1 

J’ = (I,2 ,..., p’}, .!i=(jEJ+ :fJ E{li,i=l,2 ,..., r)) 

M,*=(ieM,:y,!>O), Mz=M,\M,* 

Cl!j = -u,,(ri+O) if rJ#r*; aj=u,,(r~-0) if rjl=r*; ieJ* 

(4.3) 

It follows from Assumption 1 and the optimality criterion of the plany* in problem (4.1) that numbers 
pj,j E J* exist for which 

pj 2 0, j E J’ \ Ji; yi =O, i E M,‘; yi s 0, i E Mf (4.4) 
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where 

Yi =h:( C fJjCXjlZ(fJ)+ F(O)i(Ts, +O)), i E IU, 
jc/’ 

We shall assume that the solution y* of problem (4.1) is such that the following assumption 
holds. 

Assumption 2 

(q + y”h)ii(t;) # 0 if tJ e (0.t’). j E J’ \ Ji 

(g+y”h)ti(t;)+O if tJ=Ovt* or jEJ;( 

Construction of the structure S(T + 0) and the defining elements Q(zO + 0). We have the following 
possibilities: k* = IMz 1 c IJ* 1 (case A) and k* = IJ* 1 G IMP 1 (case B). 

Consider case A. We introduce the notation 

b=diag(d(tJ), jEJ*), d(t)=t.l 
em) m a2f (4 

D=D(XTo(t*).YL), D(x,y)=7+ c ys* 
s=l 

B = (Ecj, = 2aja(ti), j E J’), S=(Sj,j E: J’) 

and consider the quadratic programming problem 

Z(s)=[(F(O)i(z~+O)+ES)‘D(F(O)i(z~+O)+Bs)+s’~S]/2~min 
s 

hi’(Bs + F(O)i(z, + 0)) = 0, i E A4: (4.5) 

hi(BS + F(O)i(Ta + 0)) 6 0, i E Af,O; Sj 2 0, j E J’ \ .Zi 

It is obvious from (4.4) that an admissible plan in problem (4.5) exists. The function Z(s) obviously has 
a lower limit. Consequently, problem (4.5) has a solution. 

Lets* = (sr,j E .Z*) be a solution of problem (4.5). Put 

J,,, = J; u (j E .Z’ \ JL : SJ f 0), Jo, = (j E J(*, : d(tJ) = 0) (4-b) 

IV:* = (i E M,o : lips* + F(O)i(z, +O))= O}, M= Iv, ulu,q 

By the optimality criterion, numbers ci, i E fi, ki 2 0, i E M$ exist, such that the components of the 
vector 

satisfy the relations 

Aj = 0, j E J,,,; AZ 3 0, j E J’ \ J,,, 

We shall assume that the following conditions are satisfied; together with Assumption 2, they guarantee 
that the solutions y*, S* of problems (4.1) and (4.3, respectively, are unique. 

Assumption 3. In case A 

Aj > 0, j E J* \ J(,,; E,i > 0, i E h4f*; det e*, # 0 

where 
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Put 

P =I J,*, I + I J(O) I. i = -u,,(+O) if i, =O, i=u,,(iO) if f, #O 

(Ti,i=1,2,...,p)={t~,jEJ~*,; t;.jEJcO)} 

ii =G ij+l, j= 1,2 ,..., p-1 

(4.7) 

Theorem 1. Let z. be a non-regular point and suppose Assumptions 1-3 hold for problems (4.1) and 
(4.5). Then 

1) for z = 20 + 0 the structure and defining elements of the solution have the form 

S(z, +O)= (p(z, +O)=F, k(T, +o)=k, M&o +O)= R 

l*(To +0)=l’(z,+0)=0, M,(z,+O)=L(r,+O)=0) 

Q(~~+O)={tj(zo+O)=ij, j=1,2,....p; y(~o+O)=y*) 

(4.8) 

2) for r E T+(zo)\zo, problems OC(r) have non-degenerate solutions whose structure and defining 
elements are uniquely defined by relations (3.1) where p = p, k = k, A4. = M, S = S(‘co + 0), and the 
initial conditions Q(zo + 0). An optimal control u,(.) for r E T+(T~)\T~ is constructed by the rules (3.3). 

The scheme of the proof of Theorem 1 is similar to that of the theorem in [ll]. 
Consider case B. Note that in this case problem (4.5) has a unique admissible plan s* = (ST = pj/2, 

j E J*). Consequently, it is the unique optimal plan of problem (4.5). Put 

J(*, = J”, J,,, = Ij E J,,, :d(f;)=O), M=M,’ (4.9) 

Then the conditions that guarantee the uniqueness of the solutiony* of problem (4.1) take the following 
form. 

Assumption 3’. In case B 

yi < 0, i E M,O; Pj > 0, j E Jf*) \ ./i 

- - 
We define the parametersp, k, tj(j = 1, 2, . . . , p) according to the rules (4.7). Theorem 1 holds for 

case B provided Assumption 3 is replaced by Assumption 3’. 
Thus, if Assumptions l-3(3’) are satisfied, Theorem 1 enables one to define solutions of OC(r) 

uniquely in a right neighbourhood T+(zo) of a non-regular point zo, given a solution of problem OC(ro). 
Similar results hold for the properties of the solutions of problems OC(r) in a left neighbourhood T-(T~) 
of the point ra. 

5. THE DEPENDENCE OF THE PERFORMANCE CRITERION 
ON THE PARAMETER. THE EXTREMUM PROPERTY 

OF THE STRUCTURE S(r, + 0) 

We have presented rules for constructing the vector y(ro + 0) and structure S(zo + 0): the vector 
y(zo + 0) was determined by solving problem (4.1) and the structure S(ro + 0) by solving problem (4.5). 
These rules may be given a different interpretation, related to the properties of the function 
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07) = f0(X,VN. 2 E I't*.7'1 (5.1) 

We will now consider that interpretation. It is well known that under the assumptions made above 
concerning the functionsh(x),x E R” (i = 0, 1, . . . , m); z(z), z E [G, T*], function (5.1) will be continuous, 
Let us investigate its derivatives. 

Let z. E [G, z*]. It can be shown that 

df,(t, +O)l&=(~ +y’(z, +O)h)F(O)i(Tc +O) (5.2) 

Obviously, given a known solution U, (e) of problem OC(zo) and a known vector i(zo + 0), the first 
derivative of function (5.1) at z = z. + 8 depends only on the choice of the vectory(zo + 0) but not on 
the choice of the structure S(ro + 0). Comparing relations (4.1) and (5.2), we conclude that the condition 
governing the choice of the vector y(zo + 0) E Y(z,) is maximization of the first derivative of function 
(5.1) at the point T = z. + 0. 

Suppose the vector y(ro + 0) = y* has been determined. We introduce the notation (4.2) and (4.3). 
Let J(i), M(i) (i = 1, 2, . . . , E) denote all possible pairs of subsets in .J*\J*, and M,“. We put 

J,‘ii = Ji U J~i,, J:i’, = (j E .I$! : d(?J) = 0). R" = M,' U M,, 

and construct parametersp(‘), kc’), Q@) = jr,?‘, j = 1, 2, . . . ,p@); y*} by rules (4.7), replacingJ(*), Jco,, M 

by J{‘), J#, fi(‘). Now let E denote the set of indices i E { 1, . . . , E) for which continuous functions 
t,“‘(T) (j = 1, 2, . . . , p@), y(‘)(z), z E T+(zo) exist satisfying conditions (3.1), where p = p@), k = kc’), 
M* = a(‘), initial conditions {5(i)(z + 0)J = 1, 2, . . . ,p@);yci)(~ + 0)) = Q”, and the inequalities 

ty’(Z)G f;‘;‘,(Z), j = 1,2,...,p"'-1; $)(7)3 0, I$) G C* 

fi(l.t(~,k(~), r;;)(T), j = 1,2 ,..., ,#‘)) G 0, 1 E M \ Hti), z E T+(z,) 
(5.3) 

It is obvious that the first three elements 

s*(Q + 0) = (~(7~ + O>, k(z, + Oh M&r0 + 0)) 

of the desired structure S(r + 0) belong to the set of parameters 

s*(i) __(p(;),k(i),~(Ol, Ike 

Note that, essentially, it is the parameters 

S*(T)= (p(W(Q.M,(Q) 

that determine the structure S(z) if no interval [Z, ?] C [G, z*], Z c T exists, where p(z) > 0, 
r E [2, T]. 

For i E E, z E T+(qJ, we construct controls u$!‘(.) as follows: 

ufi)(r) = (.._l)jk(i) z * rc[r~)(~),r~!,(z)[, j=O,l,..., p’” 

r:)(7) = 0 by., (2) - r* ’ p’+l - 

(5.4) 

It follows from relations (3.1) and (5.3) that the controls u$)(.), i E E are admissible in problem OC(z) 
for z E T+(zo). 

Let $(*) be a trajectory corresponding to a control @(.) and initial state z(r). Consider the 
functions 

It is obvious that 

f!“(z) = fo(x~‘(r*)). T E T’(Q), i E E 
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fi’)(r, + 0) = f.(r, +O) = fo(x,, (t’)) = const 

df~“(r, +0)/d-r = df,(r, +O)ldr = (g + y*‘h)F(O)i(~~ +0) = const, i E E 

Let us evaluate d*f!‘)(z)/dz*. To that end, we introduce vectors #) = (.s,@,i E J*) 

S!” =i:‘,‘i,+,(Zg)-i:i(:)(TO)r iE J${ 
J 

s!i) = i;+,) 
J . j E q; \ (J”’ u J”‘) 

l (0) M) 

(0 

9 
= -i$,(r,), j E J$‘, = {j E 1;:; : r; = 1.); sy = 0, j E J’ \ J$ 

where q(j) is an index from { 1, . . . , p(‘)} such that 

It can be shown that 

d2f”‘(z, +O)ldT* =21(s”)) * w-9 

It follows from relations (3.1) and (3.5) that the components of the vector #) (5.5) satisfy the 
restrictions of problem (4.5). 

Thus, if i E E, there is for every set of parameters S*(‘) a plan s(j) of problem (4.5), and twice the 
value of the objective function I(s) for this plan equals the value at z = z. = 0 of the second derivative 
of the objective function of problems, OC(z), z E T+(Q), evaluated along the controls u’::‘(.) (5.4) 
generated by the set of parameters S*(l). 

By construction, corresponding to the parameters S*(ZO + 0) = S*(‘O) we have a vectors* = #O) which 
is a solution of problem (4.5). Consequently 

Hence it is obvious that, using the rules described above for constructing the elements S*(zo + 0) of 
the structure S(r, + 0), one can give the following extremum interpretation: the elements S*(ro + 0) 
of the structure S(zo + 0) belong to the set of parameters S *(‘), i E E, at which the following minimum 
is reached 

11,t d*f?(.r, + O)/ dz* (5.7) 

It is obvious that if the minimum in this expression is reached at a unique io E E, then the elements 
S*(zo + 0) of the structure S(z, + 0) are uniquely defined. 

We note that the conditions formulated in Assumption l-3 (3’) guarantee that 
l)y* is the unique vector at which the first derivative of function (5.1) attains its maximum value for 

Y E Y(ro); 
2) the maximum in (5.7) is reached at a unique index io E E; 
3) we have 

Thus, if Assumptions 1-3 (3’) are satisfied, the vectory(ro + 0) and the structure S(ra + 0) are uniquely 
constructed by the rules described above. 

If the conditions of Assumptions l-3 (3’) are violated, the rules as described do not guarantee the 
unique construction of y(zo + 0) and S(z, + 0). It should be noted, however, that the probability of 
such situations actually occurring is very small [13]. 

6. THE METHOD OF CONTINUATION OF SOLUTIONS 
WITH RESPECT TO A PARAMETER 

Using the scheme of the standard method of continuation with respect to a parameter [14,15], the special 
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method for solving systems of non-linear problems in the neighbourhood of a non-regular point [14, 
151, and the rules derived above for constructing a new structure and new defining elements at a non- 
regular point, one can easily devise a numerical method for constructing solutions u,(a) of problem OC(T) 
for all parameter values z E [G, r*]. We will outline the general scheme of the method. 

Let us assume that at a time z = r* there is a known optimal control (OC) u,,(.) of problem OC(r.), 
its structure S(G) and defining elements Q(G). 

If r* is a regular point, we put 

za: =t,, p: = p(z,). k: = k(z,), hf.: = M,(z,) 

tj:=tj(2.)(j=i, 2,...,/7), L:=Y(2*) 

and proceed to operationsA*. If rt is a non-regular point, then, putting zo: = G, we proceed to operations 
B*. 

Operations A*. Let the known parameters be ~,,p, k, MI; ij(j = 1, 2, . . . ,p), j. 
For r E [ro, ri], OCs u,(.) of problem OC(z) are constructed according to rules (3.3) with the switching 

times t&z) (j = 1,2,. . . , p) and the vectory(z) uniquely determined from relations (3.1) and the initial 
conditions 

tj(Zo+O)=ij(j=l, 2, . . . . P); Y(Ta+O)=J 

where z1 = min{r*, %i}, ?i being the non-regular parameter value closest to r. on the right. If z1 = z*, 
the algorithm ends its operation. If z1 < z *, we put ro: = z1 and proceed to operations B*. 

Operations B*. Suppose for the non-regular point z = z. we known an OC u,,(.) of problem OC(zo), 
its structure S(ro) and defining elements Q(zo) = {tj(ro), j = 1,2, . . . , P(Q); y(zo)). Using this information, 
we formulate and solve problem (4.1). The vector y(ro) may be used as the initial plan. 

Suppose Assumption 1 is satisfied. The solution of problem (4.1) yields the construction of an optimal 
plan y* and of numbers pi, j E J*, satisfying (4.4). 

Note that if m* = ]MJ , the vectory(zo) is unique and is therefore an optimal plan of problem (4.1). 
Thus, in that case there is no need to solve problem (4.1). 

Suppose the vectory* satisfies Assumption 2. Formulate and solve problem (4.5). The numbers pj/2, 
j E J*, may be taken as the initial plan. Note that in case B (see Section 5) there is no need to solve 
problem (4.5). 

Lets* denote-an optimal plan of problem (4.5). Suppose Assumption 3 (3’) holds. Puttingy = y*, 
define the set M by rule (4.6) (4.9) and parameters p, k, t,(j = 1, 2, .~, p) by rules (4.7). Using 
these parameters, proceed to operations A*, puttingp = p, k = 6, M* = M. 

Remarks. 1. The dimensionalities of problems (4.1) and (4.5) depend on the degree of non-regularity of the 
point ~0: the larger @(zo), the more dimensions problems (4.1) and (4.5) will have. For example, if P(T~) = 1, one 
of problems (4.1) and (4.5) has a unique plan (dimension 0), while the other has a plan and only one admissible 
direction in which one can move from the plan (dimension 1). 

2. If z is a regular point, the Jacobian of Eqs (3.1) is non-singular. In that case, in order to find the functions 
t,(z) (j = 1, 2, . ,p),y(z) from (3.1), one can use any standard method for continuing the solutions of systems of 
non-linear equations [15]. If r is a non-regular point, the Jacobian of Eqs (3.1) may turn out to be singular (when 
L(T) f 0). In that situation the standard methods do not work well, and special methods, such as those of [16], 
are needed to solve Eqs (3.1) in the neighbourhood of a non-regular point. 

7. EXAMPLE 

We will illustrate the application of the scheme proposed above for constructing solutions of problems 
OC(z), z E [G, 2*], by a simple example. Consider the following family of OC problems 

x’(3)x(3) /2 + min 

OC*(z) : 
X = Ax + bu, x(O) = Z(T), I u(t) Ic 1, t E [O, 31 

fi(x(3)): = x,(3)-0.5 d 0 

J-2 (x(3)): = -Xq (3) - 1.5 G 0 

where 
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x’=(x,, x2. x3, x,), z’(T)=(--19.125+27~, 2.5-45.52, 3.5+36~, -3-5~) 

0 0 IO0 

0 0010 
b= 

0 
’ A= 

0001 

I 

fE[T, =-O.l, 7* =O.l] 

I 0 0 0 0 

Suppose that when z = T* there is a known solution of problem OC(z*): the OC has the form 

M)= 1, tE[O. t,(M; UT(f) =-I, rE[r,(T), 31 (7.1) 

where z = G, tl(rt) = 2.902. Corresponding to this control are the following structures and defining 
elements 

S(L)=IP(T*)= 1, k(T*)=l, M,(T*)=0. I*(z)=l’(T*) =o, M&*)= L(T,)=O] 

ecL)=r~,(T*)=2.902; y(z*)=(y,(z*)=0, y*(2,)=0)) 

The solution of the problem OC*(r*) is non-degenerate, since P(G) = 0. According to what was stated 
in Section 3, if z E T+(G), problems OC*(z) have a non-degenerate structure S(z) = S(G) and an OC 
of the form (7.1) whee the time t,(z) is uniquely defined by relations (3.1), which in this example have 
the form 

I 

f 

11 CT) 

wMz)+ j a(r)dr - 3 a(r)dt ‘i U(f,(T)) = 0 (7.2) 

where 

(3-t)3/6 

&) = (3 - 0* 12 
(3-r) ’ 

I 

By construction, uT(t) = sign AT(f), t E [0, 31, where 

A,(t) = ~‘0, Y(T) =O, x,Wb, t E [O, 31 

Figure 1 shows a graph of the function A,(t), t E [0, 31, for z = -0.05. 

(7.3) 

Fig. 1 
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According to Section 6, OCs of problems OC*(z) are constructed by rules (7.1), (7.2) for r E [T*, ri], 
where zi > Z* is the parameter value at which the solution becomes degenerate. In the example 
considered here, degeneracy occurs at 7 = z1 = 0: 

S(-o) = S(%), Q(-o) = {r,(-O) = 3, ~(-0) = 0) 

~(O)=b(O)=Z k(O)= 1, M,(O)=0, f*(O)=O, f’(O)= I, M,(O)=0, L(O)={l)) 

Q(0) = (t, (0) = 2, ts(0) = 3; y(0) = 0} 

The degree of degeneracy is p(O) = 2. A graph of the function AT(t) for z = 0 is shown in the figure: 
UT(f) = 1. 

To construct a new structure S(+O) and new defining elements Q( +O), we use the results of 
Section 4. 

Since there are no active terminal constraints at z = 0 (that is, M,(O) = 0), it clearly follows that 
y(z) = 0 for z E T+(O) and there is no need to solve problem (4.1) in order to find y(+O) = y* = 0. 

To construct a new structure S( +0), we formulate the quadratic programming problem (4.5), which 
is in this case 

(-82, -lO)s+Oss’~*269, ;INHm~“~zj s, 30, s,<o 

and the solution is 

so =($ =9, s; =O) 

Assumptions l-3 are satisfied, and therefore, by Theorem 1, new structures S(+O) and defining 
elements Q( +0) are constructed by rules (4.6)-(4.8); they take the form 

ForzE 

St-@) = (p(+o) = 2, k(+o) = I, M,(+o) = 0, f*(+o) = f’(+o) = 0, M&o) = L(+o) = 0) 

Q(tO> = (r,(+O) = 2, t+O) = 2; y(+O) =0} 

T+(O), and OC is constructed by the rule 

u,(t) = 1. 2 E 10, t,(NW*(T), 31; u&) = -1, c E [r,(z), t*(2)] (7.4) 

The times ti(r) and c~(z) are uniquely found from relations (3.1), where 

p=p(+O)=2, k=k(+O)=l, lu, =M,(+O)=0 

and by the initial conditions Q( +O). In the example in question, these relations have the form 

, 
h(7) fz(7) 

F(o)z(~)+ J ~(t)dt - J ~(t)dt+ f a(t)dt a(ti(r)) ~0, i = I. 2 (7.5) 
0 h(7) h(7) 

As z varies from +0 to f* = 0.1 the solution does not degenerate. Consequently, for all z E [0, z*], 
solutions of problems OC(z.) are constructed by rule (7.4), where the times ti(~) and tz(~) are uniquely 
determined from (7.5). 

By construction, u,(t) = sign AT(t), t E [0, 31. Graphs of the functions At(t), t E T, (7.3) for z = 0.05 
and z = 0.1, are shown in the figure. 

1. 

2. 
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